
®

.

AWS Microservices

Info@yash.com | www.yash.com

Abstract:

Introduction:

Microservices as a broad term is an approach to

software development, to facilitate deployment

cycles, and scaling through a defined ownership

model. Software, consisting of micro independent

services, owned by small teams communicate over

well defined APIs.

Reputed management & consulting firms like McK-

insey have recognised microservices as a process

to increase the technology organization’s ability to

provide cross-unit and cross-application functions.

The Boston Consulting Group rightly points out the

of microservices being like readymade packaged

food, where you don’t know where it is made, but it

gets the job done.

In this white paper we brief AWS microservices basics, the benefits of AWS microservices deployment, the

challenges it encounters, and how AWS helps address them.

As an industry that is fast paced, trends in product

as well as application developments are an indus-

try norm. With enterprises looking forward to turn-

ing leaner, more agile and move towards a DevOps

approach, micro services fits the bill perfectly, with

its focus on building single-function modules with

distinct interfaces and operations.

Microservices architectures are not a radically dif-

ferent approach to the SLDC, but can be viewed as

a collection of best practices in Agile methodology,

API first design and Continuous delivery.

®

.

Info@yash.com | www.yash.com

®

.

Info@yash.com | www.yash.com

Microservices – Components & features:

Components in the architecture can be upgraded,

changed or removed without affecting the func-

tioning of other services or components. Also, un-

derstandably, the teams function independent of

each other.

DevOps is a principle where the team responsible

for building a service is also responsible for main-

taining, its up-keep and operating it, while main-

taining close contact with the end users and con-

stantly upgrading services to meet customer needs/

expectations.

These architectures are distributed systems with

built in decentralised data management, with each

service having its own miniature database to suit its

own data model. They are a hyper local version of

services – in every way of development, deployment

and management.

Microservices follow the principle of tailor making

their services to suit requirements specific to each

need. It therefore follows a heterogenous approach

to every aspect including operating systems, data-

bases, and tools – thus giving developers freedom

to operate – a system popularly called polyglot per-

sistence and programming.

Components are designed such that they hide the

complexity of their own design – like a black box.

Communication happens via definite APIs and

does not show any hidden dependencies between

the components.

A microservice component is designed specifically

to cater to a specific capability, that focuses only on

a particular domain. If the component’s code builds

up to a certain level that exceeds the “micro” stage

and gets complex, it is broken down into smaller

services.

Since microservices is a developmental, architectural approach, it is challenging to define its

characteristics. However, all microservices, have distinct features as follows:

Independent :

Build-Run:

Decentralised: Customised:

Black box:

Expertise:

®

.

Info@yash.com | www.yash.com

Benefits of AWS Microservices:
One of the major reasons enterprises use microservices is to address the issues of scal-
ability, complexity and agility that are associated with traditional on-premises or mono-
lithic deployments. The major factors that turn into business drivers for deploying AWS
Microservices are:

With determined, and well established boundar-
ies, and small teams that take entire ownership of
services, teams work independently and fast, with
quicker response times and smaller working cy-
cles.

Quality of code improves immensely with micro-
services due to a simple fact that the focus is on
small bite sized modules with enhanced reusabili-
ty, accountability and composition.

When an enterprise chooses to deploy microser-
vices model, it means even large scale systems are
broken down into appropriate modules, for optimal
usage. The services can be scaled vertically or hori-
zontally based on requirement.

Microservices give the flexibility of choice to the de-
velopers where they can choose technologies, data-
bases and frameworks thus giving room for creativi-
ty and innovation.

Agility:

Quality: Scalability:

Innovation:

Challenges of AWS Micro Services:
Although AWS Micro Services offers exciting possibilities, and all advantages as detailed
above, as with all architectural methodologies, this approach comes with its own set of
challenges. Some trade-offs that are inherent to the micro services are

• Organization – Since Microservices at its core is all about smaller teams, leaner organization, organis-
ing resources to form an effective team structure, streamlining activities that follow a DevOps approach is
a challenge.

• Migration – When an enterprise considers migration from a traditional monolithic architecture to a
microservices architecture, it is important to examine the right boundaries and resonsibility placed on mi-
cro services. This process is not easy, because it requires that the huge complex existing system be broken
down into proper segments without causing disruption.

 • Distributed Systems – While Microservices promises an effectively distributed system, it comes in-
herently with a set of issues collectively called the Fallacies of Distributed Computing

• Versions – Versioning for microservices can be a big problem, because the team needs to incrementally
deploy new versions of a service in such a way that both old and new versions of a service contract are
running simultaneously. Therefore, it’s important to have a strategy for service versioning. There are several
best practices like routing-based versioning, which can be applied at the API level.

AWS has a bouquet of benefits that address most of the above detailed challenges of
microservices architectures:

• On-demand resources – At its very basic DNA, the AWS is a platform where resources are available
on demand. Where traditional infrastructures are limited, AWS has no limit on resources. This address
the challenge of provisioning and scaling resources.

• Innovation – Because AWS means the enterprise only pays for how much and what it uses, it allows
room for innovation while not compromising on the risk exposure factor. New services and features can
be tweaked, replaced, brought in or phased out if not successful.

 • Continuous Deliveries – The cloud in general and the AWS platform in particular allows automa-
tion of the provisioning and deployment process. Simultaneous and continuous Integration with the
development part of the application lifecycle is also extended to the operations part of the lifecycle. This
aspect enables the adoption of Continuous Deployment and Delivery.

• Managed services – Managed services is one of the biggest offerings of the cloud. Managed services
ease the provisioning virtual servers, configuring and optimizing software, and having reliable backups.
Features like monitoring, security, availability and scalability are in built into those services. This reduces
the operational complexity of running microservices.

• Infrastructure as code – In addition to using scripts to manage an infrastructure, AWS allows for
management of whole architecture as a code in a version control system, just like in application code.
Which automatically means any part of the infrastructure can be redeployed at any time. Rollbacks are
no longer limited to the application—they can include the whole infrastructure.

• Service orientation – AWS follows a service-oriented structure where each AWS service focuses on
solving a specific issue, and communicates with other services using definite APIs. This allows for a won-
derful possibility where the enterprise can put together creations it wants from building blocks.

®

.

Info@yash.com | www.yash.com

Conclusion:

AWS Glossary:

Microservices as an architecture is a distributed approach, designed to overcome challenges and
limitations of traditional SLDC models.

AWS offers a large spectrum of managed services, that help development teams choose better,
build faster while minimising operational complexity.

For updated AWS terminology, please see AWS Glossary in the AWS General Reference.

Resources:
• AWS Whitepapers • AWS Architecture Blog • AWS Answers • AWS Documentation

